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We reanalyze the problem of thermally activated phase slips �TAPS� which can dominate the behavior of
sufficiently thin superconducting wires at temperatures close to TC. With the aid of an effective action approach
we evaluate the TAPS rate which turns out to exceed the rate found by McCumber and Halperin, Phys. Rev. B
1, 1054 �1970� within the time-dependent Ginzburg-Landau analysis by the factor ��1−T /TC�−1�1. Addi-
tional differences in the results of these two approaches arise at bias currents close to the Ginzburg-Landau
critical current where the TAPS rate becomes bigger. We also derive a simple formula for the voltage noise
across the superconducting wire in terms of the TAPS rate. Our results can be verified in modern experiments
with superconducting nanowires.
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I. INTRODUCTION

Fluctuations are known to play an important role in su-
perconducting structures with reduced dimensions. In the
case of superconducting nanowires,1 fluctuations may essen-
tially determine the system behavior in a wide temperature
interval causing, e.g., nonvanishing wire resistance down to
T=0.

Over four decades ago it was realized by Little2 that suf-
ficiently thin superconducting wires may acquire a nonzero
resistance below the BCS critical temperature of the bulk
material TC due to nontrivial thermal fluctuations of the order
parameter �= ���exp�i��. Such fluctuations result in a tem-
porary local destruction of ��� accompanied by the phase
slippage in the corresponding points of the wire. According
to the Josephson relation V= �̇ /2e, this process must cause a
nonzero voltage drop across the superconducting sample,
thus bringing it into a resistive state.

Quantitative theory of these thermally activated phase
slips �TAPSs� was worked out by Langer and Ambegaokar,3

and by McCumber and Halperin �MH�.4 This Langer, Ambe-
gaokar, McCumber, Halperin �LAMH� theory predicts that in
a superconducting wire TAPSs are created with the rates ��,
which are defined by the activation dependence

�� = B�e−�F�/T. �1�

Here �F� are effective free-energy barriers which the system
should overcome in order to create a phase slip correspond-
ing to the overall phase change �2	. These potential barri-
ers are essentially controlled by the superconducting conden-
sation energy for the volume of the TAPS core where the
order parameter ��� gets destroyed by thermal fluctuations. In
the absence of any external bias one naturally has �+=�−
and, hence, no net voltage across the sample can occur. Ap-
plying an external current I, one lifts the symmetry between
“positive” and “negative” TAPSs. As a result, there appears a
voltage drop �and, hence, nonzero resistance R�T�� propor-
tional to the difference between the two TAPS rates �+−�−.

According to Eq. �1� TAPS remain significant only at tem-
peratures close to TC while R�T� decreases exponentially as
T is lowered well below the critical temperature. This pre-
diction was fully confirmed in experiments5,6 where the ac-

tivation behavior of R�T� was detected in small supercon-
ducting whiskers with diameters �0.5 
m. Later it was
realized that, in thinner wires, not only thermal but also
quantum fluctuations of the order parameter �quantum phase
slips� become important. It was demonstrated both
theoretically7,8 and experimentally9–15 that quantum phase
slip effects can yield appreciable resistivity of superconduct-
ing wires with diameters in the range of �10 nm even well
below TC. For more details we refer the reader to the review.1

Turning again to thermal fluctuations near TC, we note
that, while for evaluation of the free-energy barriers for
TAPS �F� in Eq. �1� it suffices just to solve the standard
Ginzburg-Landau �GL� equations, the problem of finding the
preexponent B� is in general much more involved, as it re-
quires employing the formalism which properly accounts for
dynamical effects in superconductors. MH �Ref. 4� treated
this problem within the formalism of the so-called time-
dependent Ginzburg-Landau �TDGL� equations16 which was
available at that time. Unfortunately, this formalism is known
to suffer from serious drawbacks �see, e.g., Refs. 1, 17, and
18 for further discussion� and it is in general hardly appli-
cable below TC. Thus, although MH calculation4 of the pre-
exponent B� was correct and sound by itself, their final re-
sult needs to be reanalyzed on the basis of a more solid
theoretical approach. This task will be accomplished below.

The structure of the paper is as follows. In Sec. II we
briefly recapitulate the microscopic effective action
formalism7,8,17 and employ it in order to estimate the fluctua-
tion correction to the order parameter of ultrathin supercon-
ducting nanowires. In Sec. III we apply this formalism in
order to evaluate the preexponent B� in the expression for
the TAPS rates �Eq. �1��. We will then perform a detailed
comparison between our result and that of Ref. 4. In addi-
tion, we will present a simple formula which expresses the
voltage noise in superconducting nanowires via the TAPS
rates �Eq. �1�� evaluated here. Some technical details of our
calculation of fluctuation determinants are relegated to the
Appendix.

II. EFFECTIVE ACTION AND GAUSSIAN FLUCTUATIONS

Consider a uniform superconducting wire with cross sec-
tion s and length X. In order to account for superconducting
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fluctuations in such a wire we will use the effective action
approach developed in Refs. 8 and 17. Our starting point is
the path-integral representation of the grand partition func-
tion,

Z =� D�DVDA e−Seff, �2�

where Seff�� ,V ,A� is the imaginary time version of the ef-
fective action for a superconducting wire. The fluctuating
order-parameter field � as well as the scalar and vector po-
tentials V and A depend on coordinate x along the wire �i.e.,
−X /2�x�X /2� and imaginary time � restricted to the inter-
val 0���1 /T. The exact expression for this effective action
is obtained by integrating out the electron degrees of free-
dom and is not easily tractable in a general situation. In order
to simplify this general expression for the action Seff, one can
assume that deviations of the amplitude of the order-
parameter field ��x ,�� from its equilibrium value �0 are
relatively small. This assumption allows the expansion of the
effective action in powers of ���x ,��=��x ,��−�0 and in the
electromagnetic fields up to the second-order terms. The next
step is to average over disorder. After such averaging the
effective action becomes translationally invariant both in
space and in time. Performing the Fourier transformation we
obtain8,17

Seff =
s

2
� d
dq

�2	�2� �A�2

Ls
+

C�V�2

s
+ �D	qV +




c
A	2

+ �J	V +
i


2e
�	2

+
�L

4m2	iq� +
2e

c
A	2

+ ������2
 .

�3�

The functions ���
 ,q�, �J�
 ,q�, �L�
 ,q�, and �D�
 ,q� are
related to the averaged products of the Matsubara Green
functions. The corresponding general expressions are estab-
lished in Refs. 1, 8, and 17. They are rather cumbersome and
will not be specified here. In what follows we will use only
simplified forms of these functions applicable in certain lim-
its.

As the action Seff �Eq. �3�� is quadratic both in the voltage
V and the vector potential A, these variables can be inte-
grated out exactly. After such integration one arrives at the
effective action S which only depends on � and ��. We get

S =
s

2
� d
dq

�2	�2 �F�
,q����2 + ������2� . �4�

Since usually the wire geometric inductance L remains un-
important, in what follows we will disregard this quantity by
setting L=0. Then we obtain1,8

F�
,q� =

 �J

4e2
2 +
�L

4m2q2�
C

s
+ �Dq2� +

�J�L

4m2 q2

C

s
+ �J + �Dq2

. �5�

The effective action �4� allows directly evaluating the
fluctuation correction to the equilibrium value of the order
parameter in superconducting nanowires. Performing Gauss-

ian integration over both � and ��, we arrive at the wire free
energy

F = FBCS −
T

2 �

,q
�ln

�F�
,q�

2N0�0
2 + ln

����
,q�
2N0

� , �6�

where FBCS is the standard BCS free energy and � is the
BCS coupling constant. The order parameter is defined by
the saddle-point equation �F /��=0 and can be written in the
form �=�0−��0, where �0 is the solution of the BCS self-
consistency equation �FBCS /��0=0 and the fluctuation cor-
rection ��0 has the form

��0 = −
T

2

 �2FBCS

��0
2 �−1 �

��0
�

,q
�ln

�F�
,q�

2N0�0
2 + ln

����
,q�
2N0

� .

�7�

First let us consider the low-temperature limit T��0. It is
useful to note that, at large values of the wave number �q�
���0 /D and/or frequency �
���0, the functions
F�
 ,q� /�0

2 and ���
 ,q� are weakly affected by supercon-
ductivity. Hence, we can restrict the sum in Eq. �7� only to
low frequencies �
���0 and wave numbers �q����0 /D. It
will be convenient for us to introduce dimensionless param-
eters y=
 /�0 and z=q�D /�0, and express the kernels as
follows:

�� = N0F��y,z�, �J = e2N0FJ�y,z� ,

�L = m2N0D�0FL�y,z�, �D =
e2N0D

�0
FD�y,z� , �8�

where all the functions Fj are dimensionless. The function
F�
 ,q� acquires the form

F�y,z� =
N0�0

2

4
� �y2FJ + z2FL��C/s + e2N0z2FD�

C/s + e2N0FJ + e2N0z2FD

+
e2N0z2FJFL

C/s + e2N0FJ + e2N0z2FD
� . �9�

For a wire of length X we obtain �F /��0=2N0sX, and at T
=0, the correction to �0 reads

��0 �
3

8

�0

sN0
�D�0

�
−1

1 dydz

�2	�2�ln
F�1,1�
F�y,z�

+ ln
F��1,1�
F��y,z� � .

�10�

The integral

�
−1

1 dydz

�2	�2 ln
F��y,z�
F��1,1�

is well convergent at small y and z; therefore we can replace
it by a constant of order one. The integral

�
−1

1 dydz

�2	�2 ln
F�y,z�
F�1,1�

is only slightly more complicated since F�y ,z�→0 for y ,z
→0. However, since the function F�y ,z� enters only under
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the logarithm, this integral is convergent as well. Making use
of the above expressions for the functions F�
 ,q� and
���
 ,q� at T→0, we obtain

��0

�0
�

1

g�

� Gi1D
3/2. �11�

Here g� is the dimensionless conductance of the wire seg-
ment of length � and Gi1D is the Ginzburg number for a
superconducting nanowire defined as the value �TC−T� /TC at
which the fluctuation correction to the wire specific heat be-
comes equal to the specific-heat jump at the phase-transition
point. In the case of quasi-one-dimensional �1D� wires, this
number reads16

Gi1D =
0.15

�sN0
�D�0�2/3 . �12�

We note that in Eq. �11� fluctuations of both the phase and
the absolute value of the order parameter give contributions
of the same order. The estimate �11� demonstrates that at low
temperatures suppression of the order parameter in supercon-
ducting nanowires due to Gaussian fluctuations remains
weak as long as g��1 and it becomes important only for
extremely thin wires with Gi1D�1, in which case the width
of the fluctuation region �T is comparable to TC and the BCS
mean-field approach becomes obsolete down to T=0.

Turning to higher temperatures we observe that, at T suf-
ficiently close to the critical temperature TC, it is necessary to
retain only the contribution from zero Matsubara frequency.
At the same time the terms originating from all nonzero fre-
quencies are small in the parameter �0�T� /TC�1 and, hence,
can be safely omitted. Performing the integration over q, we
get

��0

�0�T�
=

T

�F
, �13�

where

�0�T� =�8	2T�TC − T�
7��3�

, ��3� � 1.2 �14�

and

�F =
16	2

21��3�
sN0

�	D�TC − T�3/2 �15�

turn out to be exactly equal to the magnitude of the effective
free-energy barrier for TAPS in the LAMH theory3,4 in limit
of small transport currents �see below�. Equations �13� and
�15� demonstrate that at temperatures close to TC Gaussian
fluctuations of the superconducting order parameter in thin
wires become more significant and effectively wipe out su-
perconductivity at �F�TC, i.e., already in much thicker
wires than in the case of low temperatures T�TC.

III. THERMALLY ACTIVATED PHASE SLIPS

In what follows let us restrict our attention to supercon-
ducting wires in which the condition �F0�TC is well satis-

fied and, hence, the effect of Gaussian fluctuations on the
order parameter �0�T� can be safely neglected. This condi-
tion requires the wire to be sufficiently thick and/or the tem-
perature should not be too close to TC, i.e., �TC−T� /TC
�Gi1D. At the same time we assume that the temperature is
still not far from TC, i.e., TC−T�TC, in which case the phys-
ics is dominated by thermally activated phase slips.3,4 As we
already discussed, sufficiently thin superconducting wires ac-
quire nonzero resistance even below TC due to TAPS, and
this resistance is essentially determined by the TAPS rates
�Eq. �1��.

A. Activation exponent

The free-energy barriers �F� for TAPS corresponding to
overall phase jumps by �2	 have been evaluated by Langer
and Ambegaokar.3 Here we briefly recapitulate their results.
In order to obtain �F� entering into Eq. �1�, we make use of
the standard Ginzburg-Landau free-energy functional for a
wire of length X:

F���x�� = sN0�
−X/2

X/2

dx
	D

8T
	 ��

�x
	2

+
T − TC

TC
���2

+
7��3�

16	2T2 ���4� −
I

2e
���X/2� − ��− X/2�� .

�16�

Here ��x� is the phase of the order parameter ��x� and I is
the external current applied to the wire.

The saddle-point paths for this functional are determined
by the standard GL equation,

−
	D

8T

�2�

�x2 +
T − TC

TC
� +

7��3�
8	2T2 ���2� = 0. �17�

For any given value of the bias current,

I =
	eN0Ds

2T
���2 � � , �18�

this equation has a number of solutions. The TAPS free-
energy barrier �F+ is determined by the two of them. The
first one, �m= ��m�exp�i�m�, corresponds to a metastable
minimum of the free-energy functional. This solution reads

��m� = �0�T��1 + 2 cos �

3
, �m =

2T

	eN0Ds

Ix

��m�2
. �19�

Here �0�T� is the equilibrium superconducting gap defined
in Eq. �14� and the parameter,

� =
	

3
�
�I� −

IC

�2
� +

1

3
arctan

2�I��1 − �I/IC�2

IC�1 − 2�I/IC�2�
, �20�

accounts for the external bias current I. The Ginzburg-
Landau critical current IC is defined by the standard expres-
sion:

IC =
16�6	5/2

63��3�
eN0

�Ds�TC − T�3/2. �21�
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The second, saddle-point solution �s�x�= ��s�exp�i�s� of
Eq. �17� has the form

��s�
�0�T�

=�1 + 2 cos �

3
−

2 cos � − 1

cosh2��2 cos � − 1
x

��T��
,

�s =
2TI

	eN0Ds
�

0

x

dx�
dx�

��s�x���2
, �22�

where ��T�=�	D /4�TC−T� is the superconducting coher-
ence length in the vicinity of TC.

The free-energy barrier �F+2	 in Eq. �1� is set by the
difference

�F+ = F��s�x�� − F��m�x�� = �F��2 cos � − 1

−�2

3

I

IC
arctan
�3

2
�2 cos � − 1

1 − cos �
�� , �23�

where �F is defined in Eq. �15�. The free-energy barrier �F−
for negative TAPS is determined analogously and is related
to �F+ as follows:

�F− = �F+ +
	I

e
. �24�

B. Preexponent

Now let us turn to the preexponent B�2	 in the expression
for the TAPS rate �Eq. �1��. For simplicity we first analyze
the TAPS rate in the zero current limit in which case �F+
=�F−=�F and B+=B−=B. In order to evaluate B one should
go beyond the stationary free-energy functional �16� and in-
clude time-dependent fluctuations of the order-parameter
field ��x ,��. In Ref. 4 this task was accomplished within the
framework of a TDGL-based analysis. Employing TDGL
equation it is possible to reformulate the problem in terms of
the corresponding Fokker-Planck equation19 which can be
conveniently solved for the problem in question. Since the
important time scale within the TDGL approach is the
Ginzburg-Landau time

�GL =
	

8�TC − T�
, �25�

this time also naturally enters the expression for the preex-
ponent B derived in Ref. 4.

Unfortunately the TDGL approach fails below TC. For the
sake of illustration, let us for a moment ignore both the sca-
lar and the vector potentials. The TDGL action for the wire is
then usually written in the form

STDGL = N0Ts�

n

� dx
	�
n�

8T
���2 +� d�F���x,��� ,

�26�

where the GL free-energy functional F���x ,��� is defined in
Eq. �16�. This form can be obtained from the action �3� by

formally expanding the kernel �� in Matsubara frequencies
and wave vectors 

 ,Dq2�4	T. Note, however, that since
the validity of the GL expansion is restricted to temperatures
T�TC, the Matsubara frequencies �
n�=2	�n�T cannot be
much smaller than 4	T for any nonzero n. Hence, the ex-
pansion ��1 /2+ �
n� /4	T�−��1 /2�→	�
n� /8T—which
yields TDGL action �26�—is never correct except in the sta-
tionary case 
n=0. Already these simple arguments illustrate
the failure of the TDGL action �26� in the Matsubara tech-
nique. Further problems with this TDGL approach arise in
the presence of the electromagnetic potentials V and A. We
refer the reader to the paper17 for the corresponding discus-
sion.

In view of this problem one should employ a more accu-
rate effective action analysis. Since the microscopic effective
action for superconducting wires1,8,17 cannot be easily re-
duced to any Fokker-Planck-type of equation, it appears dif-
ficult to directly employ the McCumber-Halperin approach4

in order to evaluate the preexponent B in the expression for
the TAPS rate �Eq. �1��. For this reason, below we will pro-
ceed differently and combine our effective action formalism
with the well-known general formula for the decay rate of a
metastable state expressed via the imaginary part of the free
energy. This method is applicable provided the system is not
driven far from equilibrium. For the decay rate in the thermal
activation regime, one has20–22

� = − 2
T�

T
Im F�T� , �27�

where T� is an effective crossover temperature between the
activation regime and that of quantum tunneling under the
potential barrier. Formally T� is defined as temperature at
which a nontrivial saddle-point solution ��� ,x� describing
quantum phase slip �QPS� first appears upon lowering T.
Within the accuracy of our calculation it is sufficient to esti-
mate T� simply by setting the QPS action SQPS�T� equal to
activation exponent, i.e.,

SQPS�T�� � �F�T��/T�. �28�

At sufficiently small currents one has8

SQPS�T� = AsN0
�N0�0�T� , �29�

where A is a numerical constant of order one.1 Hence, the
condition �28� yields �0�T���T� or, equivalently, T�=aTC,
where the numerical factor a�1 is sufficiently close to unity,
i.e., T��TC. As the whole concept of TAPS is only valid at T
close to TC, one always has T� /T�1. Thus, with the same
accuracy one can actually use the expression for the decay
rate in the quantum regime22,23 �=−2 Im F�T� �cf. Ref. 1�.
Here we will retain the parameter T� for the reasons which
will be clear below.

In the limit �F�TC it suffices to expand the general ex-
pression for the effective action around both solutions �19�
and �22� up to quadratic terms in both the phase � and the
amplitude ��. One can verify that in the limit �0�T��T the
contributions from fluctuating electromagnetic fields can be
ignored and we obtain
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Ss/m = F��s/m� + �2Ss/m, �30�

where

�2Sm =
sT

2 �

n

� dxdx�����
n,x���
�m���
n�;x − x�����
n,x��

+ ��
n,x�k�
�m���
n�;x − x����
n,x��� ,

�2Ss =
sT

2 �

n

� dxdx�����
n,x���
�s���
n�;x,x�����
n,x��

+ ��
n,x�k�
�s���
n�;x,x����
n,x��� . �31�

Here 
n=2	Tn are Bose Matsubara frequencies. The func-
tions ��

�m� and k�
�m� are expressed in terms of the kernels ��,

�J, and �L as follows:

��
�m���
n�;x − x�� =� dq

2	
eiq�x−x�����
n,q� ,

k�
�m���
n�;x − x�� =� dq

2	
eiq�x−x��F�
n,q� .

The functions ��
�s� and k�

�s� describe fluctuations around the
coordinate dependent saddle point �s�x�, and, therefore, can-
not be easily related to ��, �J, and �L. Fortunately, the ex-
plicit form of ��

�s� and k�
�s� is not important for us here.

The preexponent B in Eq. �1� is obtained by integrating
over fluctuations �� in the expression for the grand partition
function. One arrives at a formally diverging expression
which signals decay of a metastable state. After a proper
analytic continuation, one finds the decay rate in the form �1�
with

B = 2T� Im�

n

�det ��
�m��
n�det k�

�m��
n�
det ��

�s��
n�det k�
�s��
n�

. �32�

Here it is necessary to take an imaginary part since one of the
eigenvalues of the operator k�

�s��0� is negative.
The key point is to observe that at T�TC all Matsubara

frequencies �
n�=2	T�n�—except for one with
n=0—strongly exceed the order parameter, �
n���0�T�.
Hence, for all such values the function ���
n ,q� approaches
the asymptotic form,8,17 which is not sensitive to supercon-
ductivity at all at such values of 
n. In order to illustrate this
point, we provide an explicit form of the function ���
n ,q�
in the limit �
��2	TC:

���
n,q� � 2N0
1 +
2�0

2


n
2 �ln

�
n� + Dq2

	e−�TC
, �33�

where ��0.577 is the Euler constant. As long as �0�T the
last term in the round brackets can be ignored and we arrive
at the expression which does not contain the superconducting
order parameter �0 at all. Hence, this expression remains the
same even if the order parameter ��x� depends on coordi-
nates, i.e., in this limit we have ��

�m��
n�=��
�s��
n�. Likewise,

at �0�T we obtain k�
�m��
n�=k�

�s��
n�, implying that
det ��

�s��
n��det ��
�m��
n� and det k�

�s��
n��det k�
�m��
n�.

The corresponding determinants in Eq. �32� cancel out and

only the contribution from 
n=0 remains. It yields

B � 2T� Im�det ��
�m��0�det k�

�m��0�
det ��

�s��0�det k�
�s��0�

. �34�

The ratio of these determinants can be evaluated at zero cur-
rent with the aid of the GL free-energy functional �16�. This
calculation yields �see Appendix�:

Im�det ��
�m��0�det k�

�m��0�
det ��

�s��0�det k�
�s��0�

=
2�6
�	

X

��T�
��F

T
, �35�

where, as before, �F is defined in Eq. �15�.
Combining the above expressions we arrive at the final

result for the TAPS rate in the zero-bias limit:

�� � � =
4�6
�	

T�
X

��T�
��F

T
exp�−

�F

T
� . �36�

Turning to the case of nonzero bias one can essentially
repeat the whole calculation which now yields two different
TAPS rates ��. Of practical importance is the limit of trans-
port currents I sufficiently close to the critical one, i.e., 1
− I / IC�1. In this regime �− is negligibly small whereas �+,
on the contrary, increases since the free-energy barrier,

�F+�I� =
4 � 63/4

15
�F
1 −

I

IC
�5/4

, �37�

becomes lower than that at smaller currents. Accordingly,
TAPS can be detected easier in this limit.24

The preexponent B+ has essentially the same form as that
defined by Eq. �36�, one just needs to replace �F→�F+�I�
and T�→T��I�. In the limit TC−T�TC considered here the
current dependence of the crossover temperature T� appears
insignificant in most cases and with sufficient accuracy one
can set T��I��T�. Indeed, very generally one can express
T��I�=T�f�I / IC�T���, where IC�T�� is the critical current at
temperature T� and f�x� is some universal function with
f�x�1��1. Having in mind the strong temperature depen-
dence of IC�T� in the temperature interval TC−T�TC, we
find

I/IC�T�� � IC�T�/IC�T�� � �TC − T�3/2/TC
3/2 � 1,

and, hence, T��I��T��0��T�. Thus, in the vicinity of the
critical current IC�T�− I� IC�T� the TAPS rate can be ex-
pressed in the form

�+ � 8.84T�
X

��T�
��F

T

1 −

I

IC
�5/8

e−�F+�I�/T, �38�

where �F+�I� is defined in Eq. �37� and the numerical pref-
actor is again established from the calculation of the fluctua-
tion determinants which is fully analogous to that presented
in the Appendix.

Summarizing all the above results and substituting
T�=aTC, we arrive at the final expression for the TAPS rates
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���I� = �aTC
X

��T�
��F��I�

T
exp�−

�F��I�
T

� , �39�

where ��I� is a smooth function of I varying from ��0�
�5.53 to ��8.74 at IC− I� IC and, as before, the numerical
prefactor a is of order �and slightly smaller than� one. Equa-
tion �39� is the central result of this work. This expression is
supposed to be valid at TC−T�TC and at any bias current
I� IC as long as �F��I��T.

C. Comparison with McCumber-Halperin result

Let us compare our result �Eq. �39�� with the expression
for the TAPS rates derived in Ref. 4 from the TDGL-type of
analysis. We observe that Eq. �39� does not contain the
Ginzburg-Landau time �GL and exceeds the corresponding
expression4 by the factor �T��GL��1−T /TC�−1�1. On top
of that, in the vicinity of the critical current, the preexponent
in the TAPS rate �38� depends on I as B+� �1− I / IC�5/8 in
contrast to the result4 BTDGL� �1− I / IC�15/8.

In order to understand the origin of these differences, let
us—just for the sake of illustration—for a moment adopt the
TDGL action �26� and recalculate the TAPS rate �TDGL em-
ploying Eq. �27�. Since the whole calculation of the fluctua-
tion determinants remains the same �see Appendix� we
should only reevaluate the crossover temperature which we
now denote as TTDGL

� . To this end we again first set I→0 and
consider fluctuations of the order parameter around the
saddle point �s�x� along the unstable direction �Eq. �A15��
choosing

����,x� = i
cos�2	TTDGL

� ��
�2 cosh�x/��

C , �40�

where C is a constant. Substituting this expression into the
linearized TDGL equation and formally treating �GL as an
independent parameter, we define the classical-to-quantum
crossover temperature TTDGL

� as that at which a nonzero so-
lution �C�0� first appears. This definition yields

TTDGL
� = 1/4	�GL. �41�

Substituting Eq. �41� into Eq. �36� we arrive at the expres-
sion for �TDGL just two times bigger than that derived in Ref.
4 in the limit I→0.

An analogous—although slightly more complicated—
analysis can be performed also at nonzero-bias current I.
This analysis yields

TTDGL
� �I� � TTDGL

� 
1 −
I

IC
�5/4

. �42�

Combining Eqs. �41� and �42� with the result �Eq. �38��, we
arrive at the preexponent

BTDGL �
1

�GL

X

��T�
��F

T

1 −

I

IC
�15/8

,

which is again in agreement with Ref. 4. Thus, with the aid
of the general formula �27� describing thermally activation
decay of a metastable state, we confirm that the McCumber-

Halperin result4 for the TAPS rate is essentially correct
within the TDGL-type of formalism. Unfortunately, how-
ever, the latter formalism is inaccurate by itself. In particular,
in the expression for the TAPS rate it does not allow the
correctly obtaining of the classical-to-quantum crossover
temperature T�.

D. Temperature-dependent resistance and noise

In order to complete our analysis let us briefly address the
relation between the above TAPS rate and physical observ-
ables, such as, e.g., wire resistance and voltage noise. Every
phase slip event implies changing of the superconducting
phase in time in such a way that the total phase difference
values along the wire before and after this event differ by
�2	. Since the average voltage is linked to the time deriva-
tive of the phase by means of the Josephson relation, �V�
= ��̇ /2e�, for the net voltage drop across the wire, we obtain

V =
	

e
��+�I� − �−�I�� , �43�

where �� are given by Eq. �39�. In the absence of any bias
current I→0 both rates are equal ��=� and the net voltage
drop V vanishes. In the presence of small bias current I
� IC, we obtain

���I� = �e�	I/2eT. �44�

Thus, at such values of I and at temperatures slightly below
TC, the I−V curve for quasi-1D superconducting wires takes
a relatively simple form:

V =
2	

e
� sinh

	I

2eT
. �45�

The zero-bias resistance R�T�= ��V /�I�I=0 demonstrates ex-
ponential dependence on temperature and the wire cross sec-
tion

e2R�T�
2	

= 2�6	
aTC

T

X

��T�
��F

T
exp�−

�F

T
� . �46�

To complete our description of thermal fluctuations in su-
perconducting wires, we point out that in addition to nonzero
resistance �Eq. �46�� TAPS also cause the voltage noise be-
low TC. Treating TAPS as independent events one immedi-
ately concludes that they should obey Poissonian statistics.
Hence, the voltage noise power,

SV = 2� dt��V�t��V�0�� ,

is given by the sum of the contributions of both positive and
negative TAPS, i.e.,

SV =
2	2

e2 ��+�I� + �−�I�� . �47�

At small currents I� IC this expression reduces to the follow-
ing simple form:
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SV =
4	2

e2 � cosh
	I

2eT
. �48�

Similarly to the wire resistance the voltage noise rapidly de-
creases as one lowers the temperature away from TC. Only in
the vicinity of the critical temperature this TAPS noise re-
mains appreciable and can be detected in experiments.

In conclusion, employing the microscopic effective action
analysis, we have evaluated the rate for thermally activated
phase slips in superconducting nanowires. Our main result is
summarized in Eq. �39� which remains valid in the tempera-
ture interval Gi1D�1−T /TC�1. Equation �39� turns out to
be parametrically bigger as compared to the analogous ex-
pression for the TAPS rate derived earlier from the TDGL-
type of approach.4 Although this difference affects only the
preexponential factor in Eq. �39�, it can nevertheless be sig-
nificant at temperatures sufficiently close to TC and it can be
detected in experiments with sufficiently thin nanowires. Si-
multaneous measurements of both TAPS-induced resistance
and noise appear to be an efficient way for quantitative ex-
perimental analysis of thermally activated phase slips in su-
perconducting nanowires.
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APPENDIX: EVALUATION OF FLUCTUATION
DETERMINANTS

Let us set I=0 and write the Ginzburg-Landau free energy
in the form

F =
3�F

4
�

−X/2�

X/2�

d��u�2 + v�2

2
− u2 − v2 +

�u2 + v2�2

2
� ,

�A1�

where we introduced �=x /�, u=Re � /�0�T�, and v
=Im � /�0�T�. In terms of these dimensionless variables the
metastable solution �19� reads

um��� = 1, vm��� = 0, �A2�

while the saddle-point solution �22� takes the form

us��� = tanh �, vs��� = 0. �A3�

The second variation in the free energy �A1� around its
saddle point with v�y�=0 is

�2F =
3�F

4
�

−X/2�

X/2�

d���u��
2 + �v��

2

2
− �u2 − �v2

+ u2��u2 + �v2� + 2u2�u2� . �A4�

Here �u and �v describe fluctuations of, respectively, the
absolute value and the phase of the order parameter. Accord-
ingly the operators �� and k� read

��
�s��0� =

3�F

4T
�−

d2

d�2 + 4 −
6

cosh2 �
� ,

��
�m��0� =

3�F

4T
�−

d2

d�2 + 4� ,

k�
�s��0� =

3�F

4T
�−

d2

d�2 −
2

cosh2 �
� ,

k�
�m��0� =

3�F

4T
�−

d2

d�2� . �A5�

In order to fix the boundary conditions we note that fluctua-
tions of the absolute value of the order parameter in the bulk
leads are negligible. Hence, we set

�u�− X/2� = �v�X/2� = 0. �A6�

Likewise, since the current density vanishes in the bulk
leads, we can choose

�v��− X/2� = �v��X/2� = 0. �A7�

Let us evaluate the eigenvalues of, say, the operator
��

�s��0�. These eigenvalues �n
�s�= �3�F0 /4T��n

�s� are obtained
from the Schrödinger equation,

�−
d2

d�2 −
6

cosh2 �
��u = �� − 4��u , �A8�

with appropriate boundary conditions. The corresponding lo-
calized solutions of this equation have the well-known
form25

�1
�s� = 0, �u1

�s���� =�3

4

1

cosh2 �
,

�2
�s� = 3, �u2

�s���� =�3

2

sinh �

cosh2 �
. �A9�

In order to find the eigenvalues in the continuous spectrum,
we introduce transmission, t���, and reflection, r���, ampli-
tudes of the potential well,25

t��� =
�1 − i�� − 4��2 − i�� − 4�

�1 + i�� − 4��2 + i�� − 4�
, r��� = 0. �A10�

Thus, at large negative � the wave function has the form
�v���=C1ei��−4�+C2t���e−i��−4�, while at large positive �
the same wave function is �v���=C1t���ei��−4�+C2e−i��−4�.
Imposing the boundary conditions �A6� we arrive at the fol-
lowing equation for the eigenvalues �n

�s� �n=3,4 , . . .�:

Fs��n
�s�� = 0, �A11�

where

Fs��� =
1

2i

t���ei��−4�X/�� −

e−i��−4�X/��

t���
� . �A12�

In the limit X /�→� Eq. �A11� also applies for the discrete
eigenvalues �1

�s� ,�2
�s� �Eq. �A9��.
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The eigenvalues of the operator ��
�m��0� are obtained

analogously. They are defined by the equation

Fm��n
�m�� = 0, n = 1,2, . . . , �A13�

where Fm���=sin���−4X /��. Observing that Fs,m���
��n=1

� ��−�n
s,m� and extracting the zero eigenvalue of ��

�s��0�
in a standard way, after the integration over this zero mode,
we obtain

�det ��
m�0�

det ��
s �0�

=�4

3

X

�
�3

4

�F

2	T
lim
�→0

lim
X→�

��Fm���
Fs���

=
2�6
�	

X

�
��F

T
. �A14�

The ratio of fluctuation determinants det k�
m�0� /det k�

s �0�
is evaluated analogously. The operator k�

�s��0� has two local-
ized eigenfunctions �v1

�s���� and �v2
�s���� with the eigenval-

ues E1,2
�s� = �3�F /4T��1,2

�s� ,

�1
�s� = − 1, �v1

�s���� =
1
�2

1

cosh �
, �A15�

�2
�s� = 0, �v2

�s���� =� �

X
tanh � . �A16�

The eigenvalue �1
�s� is negative and, as is usually, it is asso-

ciated with the unstable direction in the functional space. The
ratio of the determinants is expressed as follows:

�det k�
m�0�

det k�
s �0�

= lim
�→0

�Gm���
Gs���

, �A17�

where Gs���=sin���X /��, while Gs��� reads

Gs��� =
1

2i

 t̃���ei���X/�� −

e−i���X/��

t̃���
� , �A18�

where t̃���= �i��−1� / �1+ i���. Thus, we get

�det k�
m�0�

det k�
m�0�

= i . �A19�

Combining Eqs. �A14� and �A19�, we arrive at Eq. �35�.
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